Introduction to Bioinformatics 6. DNA Restriction Analysis and Primer Design

Benjamin F. Matthews
United States Department of Agriculture
Soybean Genomics and Improvement
Laboratory
Beltsville, MD 20708
matthewb@ba.ars.usda.gov

What we will cover today

- ☐ Restriction site analysis
 - **□**Cloning
 - □Southern blot analysis
- ☐ PCR primer design
 - □Cloning, amplification gene expression

Restriction mapping

- ★ For cloning
- **★** Southern blot interpretation

Restriction Mapping

- *Making restriction maps was my first use of "Molecular Biology" software
- * Making restriction maps is a routine lab activity that is necessary for any type of cloning project.
- * High quality maps are important for publications and exchange of information between researchers or between labs.

Mapping Software

- ** Programs vary greatly in sophistication and case -- + of use
 - Simple drawing programs (vector graphics)
 - The venerable DNA Strider
 - GCG (not a strong point of the package)
 - Comprehensive Mac/PC MolBio programs
 - Dedicated plasmid drawing programs
 - Can it be done on the Web?
- Making high quality graphical restriction maps is one area where Mac/PC programs are much better than GCG or the Web

Biotools@UMASS Medical School

- * http://biotools.umassmed.edu/tacg/WWWtacg.php
- ★ Enter your DNA sequence
- **★ Select limits**

Web Mapping Tools

There are other some free mapping tools on the web for finding restriction sites and making text maps, but not for nice graphical maps

- WebÇutter (Max Heiman, Yale Univ.)

 http://www.firstmarket.com/cutter/cut2.html
- EMBOSS Restrict (EMBL Institut Pasteur)
 http://bioweb.pasteur.fr/seqanal/interfaces/restrict.html
- Restriction Maps (Colorado State Univ.)

http://arbl.cvmbs.colostate.edu/molkit/mapper/index.html (uses Java)

WebCutter

Webcutter is a free on-line tool to restriction map nucleotide sequence (text output)

http://www.firstmarket.com/cutter/cut2.html

• Webcutter includes the option of finding restriction sites that can be introduced into a sequence by silent mutagenesis

gtgaatgcgcaaaccaacctttggcagaacatatccatgcgtccgccatctccagcagccgcacgcggcgcatc base pairs cacttacgcgtttggttgggtaggaaccgtcttgtataggtagcgcaggcggtagaggtcgtcggcgtgcgccgcgtag 1351 to 1425

Bsml Erhl PflMI Bpml

BsaMI BssT1I Van91I Acc16I AccB7I

PCR Primer Design

- The design of PCR (and sequencing) primers is relatively simple from a computational point of view: just search along a sequence and find short sub-sequences that fit certain criteria.
- * However, since the molecular biology of PCR is very complex, the nature of these criteria is not at all obvious.
- * All primers design software uses approximately the same criteria and computing algorithms. Graphical output is not necessary.

Molecular Biology of PCR

- ** The fundamental Molecular Biology of PCR is not well understood.
- ★ We know what happens in a descriptive sense, but not the physical chemistry/thermodynamics
- * The rules for choosing PCR primers are a rough combination of educated guesses and old fashioned trial-and-error.
- * None of the published formulas for calculating annealing temperatures has been proven to give better than a rough estimate-however, most work!

Polymerase chain reaction

- * Amplify DNA fragment for cloning
- ** RT-PCR to measure gene expression
- Detect polymorphisms for mapping or diagnostics
- Need to design primers from DNA sequence

How PCR Works

- •DNA and two primers are combined in a salt solution with dNTPs and a heat stable DNA polymerase enzyme
- The primers match some sequence in the target DNA
- •The solution is rapidly heated to DNA denaturing temperatures (~95°C) and cooled to a temperature where the polymerase can function
- •Each thermal cycle generates copies of the sequence between the primers, so the total number of fragments amplifies in an exponential fashion: 2, 4, 8,16, 32, 64, etc.

Primer Design Rules

- * primers should be at least 15 base pairs long
- * have at least 50% G/C content
- ★ anneal at a temperature in the range of 50-65 degrees C
- ★ Usually higher annealing temperatures (Tm)
 are better (i.e. more specific for your desired target)
- * forward and reverse primer should anneal at approximately the same temperature

Primer design sites

- * Primer design sites
 - http://frodo.wi.mit.edu/cgi-bin/primer3/primer3 www.cgi
- * Primer3
 - http://frodo.wi.mit.edu/cgi-bin/primer3/primer3 www.cgi
- # GenomeWeb
 - http://www.hgmp.mrc.ac.uk/GenomeWeb/nucprimer.html
 - Web Primer

Primer3 Input (primer3	_www.cgi v 0.2) - Microsoft Internet Explorer	
ile <u>E</u> dit <u>V</u> iew F <u>a</u> vorites	<u>T</u> ools <u>H</u> elp	- 4
3 Back 🕶 🔵 🔻 📘	🙎 🕎 Search 🦙 Favorites 🐒 Media 🚱 🎅 🔜 🔲	
dress <equation-block> http://frodo.wi.mit.e</equation-block>	du/cgi-bin/primer3/primer3_www.cgi	Links
General Primer Picking Conditions		
Primer Size Min: 18	Opt. 20 Max. 27	
Primer Tm Min: 57.0	Opt. 60.0 Max 63.0 Max Tm Difference: 100.0	
Product Tm Min:	Opt Max	
Primer GC% Min: 20.0	Opt. Max. 80.0	
Max Self		
Complementarity:	8.00 Max 3' Self Complementarity: 3.00	
Max #N's:	0 <u>Max Poly-X:</u> 5	
Inside Target Penalty:	Outside Target Penalty: 0 Set Inside Target Penalty to allow primers inside a target.	
First Base Index:	1 CG Clamp: 0	
Salt Concentration:	Annealing Oligo Concentration:	<u>o</u>
☑ Liberal Base ☐ Show Debuging Info ☑ Do not treat ambiguity codes in libraries as consensus		
Pick Primers Reset Form		
Other Per-Sequence Inputs		
Included E.g. 20,400: only pick primers in the 400 base region starting at position 20. Or use (and) in the source sequence to mark the beginning and end of the included region: e.g. in ATC (TTCTCT) AT the included region is		
Start Codon	TTCTCT.	
Position:		
bequence Quality		
	a Interpet	

Primer Problems

- # primers should flank the sequence of interest
- * primer sequences should be unique
- primers that match multiple sequences will give multiple products
- repeated sequences can be amplified but only if unique flanking regions can be found where primers can bind
- primers can have self-annealing regions within each primer (i.e. hairpin and foldback loops)
- pairs of primers can anneal to each other to form "primer dimers"

Differential Primers

- New challenges for PCR primer design
 - gene-specific primers (for multi-gene families)
 - •identify specific species or strains of organisms
 - molecular diagnostics/detectors
 - Consensus primers
 - amplify a gene from all of a diverse group of organsims (eg. bacterial 16-S rDNA)
- *Need to work with multiple alignments and find differential or conserved regions

Primer Design on the Web

- * There are a bunch of good PCR primer design programs on the web:
 - Primer 3 at the MIT Whitehead Institute

http://www.genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi

• Cassandra at the Univ. of Southern California

http://www-hto.usc.edu/software/procrustes/cassandra/cass frm.html

• GeneFisher by Folker Meyer & Chris Schleiermacher at Bielefeld University, Germany

http://bibiserv.TechFak.Uni-Bielefeld.DE/genefisher/

• Xprimer at the Virtual Genome Center, Univ. Minnesota Medical School

http://alces.med.umn.edu/rawprimer.html

RNA secondary structure

★ Look for secondary structures

What we covered today

- ☐ Restriction site analysis
 - □ Cloning
 - ☐ Southern blot analysis
- ☐ Primer design
 - □Cloning, amplification gene expression, sequencing